On Biesterfeldt’s completion axiom spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE URYSOHN AXIOM AND THE COMPLETELY HAUSDORFF AXIOM IN L-TOPOLOGICAL SPACES

In this paper, the Urysohn and completely Hausdorff axioms in general topology are generalized to L-topological spaces so as to be compatible with pointwise metrics. Some properties and characterizations are also derived

متن کامل

Some remarks on profinite completion of spaces

We study profinite completion of spaces in the model category of profinite spaces and construct a rigidification of the completion functors of Artin-Mazur and Sullivan which extends also to non-connected spaces. Another new aspect is an equivariant profinite completion functor and equivariant fibrant replacement functor for a profinite group acting on a space. This is crucial for applications w...

متن کامل

H([lambda])-completely Hausdorff axiom on L-topological spaces

This paper de1nes the new concept of completely Hausdor& axiom of an L-topological space by means of L-continuous mappings from an L-topological space to the re1ned Hutton’s unit L-interval by Wang. Some characterizations of the completely Hausdor& axiom, de1ned in this paper, are given, and many nice properties of this kind of completely Hausdor& axiom are proved. For example, it is hereditary...

متن کامل

Metric spaces and the axiom of choice

We shall start with some definitions from topology. First of all, a metric space is a topological space whose topology is determined by a metric. A metric on a topological space X is a function d from X × X to R , the reals, which has the following properties: For all x, y, z ∈ X , (a) d(x, y) ≥ 0, (b) d(x, x) = 0, (c) if d(x, y) = 0, then x = y, (d) d(x, y) = d(y, x), and (e) d(x, y) + d(y, z)...

متن کامل

The Priestley Separation Axiom for Scattered Spaces

Let R be a quasi-order on a compact Hausdorff topological space X. We prove that if X is scattered, then R satisfies the Priestley separation axiom if and only if R is closed in the product space X × X. Furthermore, if X is not scattered, then we show that there is a quasi-order on X that is closed in X × X but does not satisfy the Priestley separation axiom. As a result, we obtain a new charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1975-0375201-7